
Open-Source
Reliability Leaderboard
Issue one: Findings from 2022

• 2Open-Source Reliability Leaderboard

Introduction
Welcome to the inaugural edition of the Mend.io Open-Source

Reliability Leaderboard! Powered by data from Renovate Bot, Mend.

io’s wildly popular open-source dependency management tool, the

Leaderboard presents the top packages in terms of reliability across

three of the most widely used languages.

We built the Leaderboard for several reasons, starting with the risk

imposed by our increasingly vulnerable software supply chain. The

ongoing rise in cyberattacks that target the software supply chain,

coupled with a shifting regulatory landscape, highlights the growing

urgency of building secure applications.

We also wanted a different lens through which to view application
security. While existing technologies like software composition

analysis (SCA) and static application security testing (SAST) are vital

for detecting and remediating problems, little has been done to

build a more holistic strategy of preventing, or at least preparing,

for problems. The need to consider a more holistic strategy is akin

to adopting fitness and healthy living routines as a way to avoid
longer term health problems.

Successful implementation of the strategy hinges on having access

to the knowledge necessary to prevent possible open-source

vulnerabilities from ever being installed in the first place. For that to
happen, companies need to know not only what packages are in use

at their companies, but how safe they are. This is becoming more

important at larger companies, as we see enterprise customers

increasingly take this approach by standardizing on a pre-curated

selection of reliable open-source code packages.

And finally, we wanted to leverage and share a valuable resource.
The Mend.io team knows that there is no better arbiter of package

reliability than Renovate, which has gathered crowd-sourced data

on over 25 million dependency updates.

Contents

Introduction

Executive Summary

General Findings

npm

PyPi

Maven

Preventive Application
Security with Mend.io

• 3Open-Source Reliability Leaderboard

Executive Summary

While evaluating software reliability is a challenge for any development program, the world of open source software
adds additional hurdles in the form of variances in how open-source code is created, distributed, and supported.
While software reliability should naturally be considered when selecting software components, the reality is that
‘should be’ does not always translate to actually doing so. Therefore, tapping Renovate’s rich trove of data to create
some reliability rankings seemed like a worthy project.
By analyzing what packages are consistently releasing good updates, we can arrive at an accurate picture of the
package’s overall reliability for software engineers trying to balance functional risk with security risk.

Like any data-driven project, selecting filtering criteria proved to be a complex and nuanced process. What
languages should we evaluate? Did we want to rank the reliability of packages that were updated individually? Doing
so would omit packages that were updated as part of a group, an increasingly common practice. Should we filter by
major and minor releases? Major versions are by the nature of the update more apt to cause dependency trouble
downstream. The criteria we ultimately settled on produced a pretty comprehensive profile for npm, PyPi, and
Maven. However, we also wanted to give a tl;dnr option for curious readers who are strapped for time. The shorthand
version is below—a top 25 list aggregated from both our individual and group rankings. You can find more granular
details in the General Findings section.

Meet the Top 25 by Language

Rank Package name Rank Package name

1 prettier-eslint 14 tap

2 np 15 react-markdown

3 jest-cli 16 c8

4 commitlint 17 @sendgrid/mail

5 @fortawesome/free-regular-svg-icons 18 @nestjs/common

6 @rollup/plugin-babel 19 ava

7 mocha 20 @fortawesome/fontawesome-free

8 @types/mocha 21 semantic-release

9 @nestjs/core 22 @rollup/plugin-commonjs

10 swagger-ui-express 23 @commitlint/config-angular

11 @nestjs/swagger 24 @rollup/plugin-node-resolve

12 @nestjs/testing 25 sinon

13 @semantic-release/github

Source: Renovate

• 4Open-Source Reliability Leaderboard

Rank Package name Rank Package name

1 org.apache.maven.scm:maven-scm-provider-gitexe 14 org.apache.maven.plugins:maven-install-plugin

2 com.github.ekryd.sortpom:sortpom-maven-plugin 15 io.swagger.parser.v3:swagger-parser

3 org.apache.maven.plugins:maven-release-plugin 16 org.jetbrains.kotlin:kotlin-maven-serialization

4 com.diffplug.spotless:spotless-maven-plugin 17 org.springframework:spring-aspects

5 org.flywaydb:flyway-maven-plugin 18 org.apache.maven.plugins:maven-shade-plugin

6 org.apache.maven.plugins:maven-scm-plugin 19 org.springframework.boot:spring-boot-actuator

7 io.gravitee.common:gravitee-common 20 redis.clients:jedis

8 org.apache.maven.plugins:maven-javadoc-plugin 21 info.picocli:picocli

9 io.gravitee:gravitee-bom 22 com.google.cloud.tools:jib-maven-plugin

10 com.google.cloud:libraries-bom 23 o.sentry:sentry-spring-boot-starter

11
org.springframework.boot:spring-boot-starter-
undertow

24 com.slack.api:slack-api-client

12 org.sonatype.plugins:nexus-staging-maven-plugin 25 com.google.auth:google-auth-library-oauth2-http

13 org.owasp:dependency-check-maven

Rank Package name Rank Package name

1 pulumi 14 pytest-mock

2 botocore-stubs 15 setuptools

3 types-python-dateutil 16 types-redis

4 types-pytz 17 types-requests

5 slack-sdk 18 aws-lambda-power tools

6 pulumi-aws 19 platformers

7 pip 20 faker

8 types-setuptools 21 aws-cdk.core

9 typing-extensions 22 flake8-bugbear

10 sentry_sdk 23 ruff

11 google-auth 24 sphinx

12 pytz 25 sagemaker

13 jupyterlab

Source: Renovate

Source: Renovate

• 5Open-Source Reliability Leaderboard

General Findings

Data was pulled for 2022 across three languages: npm, Maven, and PyPi. Keep in mind that the test results are user

tests, and sometimes users write bad tests. That’s not related to the package.

As such, there will nearly always be some level of failed tests for every package. Nobody scores 100 percent at scale,

because users write bad tests.

Criteria
After quite a bit of discussion, the team employed the following filters to build the tables:

Non-grouped (individual) updates and grouped updates were analyzed separately. While most updates are

individual, it is increasingly common to run automated batch updates. With that in mind, we felt it was worthwhile to

see what packages performed reliably in groups as well as individually. We were also looking for All-Star packages—

those that ranked well in both groups.

Minor updates only. By this, we mean that the previous version and the updated version have the same major

semantic version number. Because updates to a different major version are intended to cause breaking changes,
we did not include those.

Sourced from reliable repos. We excluded repos deemed somewhat iffy due to consistently failing tests.

Tests run after a prior successful run. This was done to avoid counting a failure that was introduced prior to the

current update.

Number of versions. With fewer than three releases, the success data for a given package varies too wildly to be

useful. So we limited it to packages with at least three releases.

Package popularity. We defined this as the top packages in each language used by Renovate users. Because the
data sets varied considerably by language, we chose what we considered to be reasonable cut-off filters for each
language, which are noted in the pertinent section. When possible, we also presented separate leaderboards on

what we call the Titans: packages for which Renovate has recommended more than 10,000 minor version updates.

Explaining the Rankings
The team created Reliability Leaderboards for the following categories in each of the three programming languages:

Individual Champions
These leaderboards rank the 20 most reliable packages used in individual updates.

Team Players
These leaderboards list packages ranked in the top 20 for reliability for group updates.

All Stars
These packages appeared in the top twenty for both Individual Champions and Team Players.

Titans
The Top 10 most reliable of the most heavily used set of packages (i.e., those for which more than 10,000

Renovate PRs were created).

We separated these packages into a separate group because they were, to some extent, victims of their

own success. Logically, more pulls will lead to more operator errors on the customer side.

• 6Open-Source Reliability Leaderboard

Results
We had some general predictions going into this, and while some proved correct, we also busted.

Prediction: Group runs bring down overall reliability. True.

Any fan of the TV show Survivor can tell you that in competition, groups are often hurt by their weakest link.

The same holds true when it comes to group updates. A group of ten packages is ten times more likely to

encounter a failure.

Prediction: Frequent releases improve average success rates. False.

You would think frequent releases would correlate to better reliability through faster bug fixes and an engaged
maintainer community, but nope! Release frequency had no effect at all on how reliably a package updated.
Maybe those teams that take more time between releases are doing better testing.

The Best of the Best
Looking across the categories, the most reliable package for each language are the following.

Npm: np

Maven: org.apache.maven.scm:maven-scm-provider-gitexe

PyPi: Pulumi

We Still Have Questions
There are always more questions than answers, but that doesn’t stop us from asking them. We hope to come up

with data-driven answers to some of these in the next issue of the Open-Source Reliability Leaderboard.

Why do some packages update well individually and fall off the group update chart?

Yes, group runs bring everything down, but that’s just one aspect. We also wonder about interdependencies in

a group—that is, would a package have a better success rate with a different group of packages?

Why are some packages more reliable in a group update?
Some packages need to be updated at the same time as others, so will be more likely to fail (or even destined

to fail) if upgraded alone. We also wonder whether some good team players are playing on good teams. That is,

a package is being updated with other reliable players.

How can we use this to improve group updates?
We know that the way packages are grouped likely affect the success rate at which some are updated—which
means that people need to be more intentional about what goes into group updates. Knowing which packages

don’t perform well in a group allows companies to to improve the groups already in use by updating the

trouble makers individually. Used in conjunction with automated merge confidence tools, this could prove
helpful when planning group updates and provide visibility into the dependency update gap. Data like this will

allow people to create larger groups that will succeed with higher confidence, which means that companies
will spend less time processing updates. Bottom line? Improving the quality of group updates helps an

organization improve application security.

Note: Some of these packages are not typically used as software dependencies, but instead are used as pipeline

tools. Pipeline tools will run after the testing phase of a build has succeeded. So naturally, the failure rate would

be close to zero. In a way, it’s cheating a bit, so we thought it worth noting.

https://github.com/sindresorhus/np#readme
https://mvnrepository.com/artifact/org.apache.maven.scm/maven-scm-provider-gitexe/1.9
https://github.com/pulumi/pulumi

• 7Open-Source Reliability Leaderboard

npm (NodeJS datasource)

For npm, the filter was limited to the top 1,000 packages. The lint and nestjs communities did well, both individually
and in group updates.

Individual Champions

Rank Package name
Number of
versions

Success
percentage

1 prettier-eslint 5 100.00%

2 np 5 99.68%

3 jest-cli 19 98.73%

4 commitment 16 98.44%

5 @fortawesome/free-regular-svg-icons 7 98.44%

6 @rollup/plugin-babel 5 98.36%

7 mocha 8 98.31%

8 @types/mocha 4 98.21%

9 @nestjs/core 32 98.08%

10 swagger-ui-express 4 98.02%

11 @nestjs/swagger 12 98.01%

12 @nestjs/testing 32 98.01%

13 @semantic-release/github 5 97.97%

14 tap 11 97.94%

15 react-markdown 6 97.94%

16 c8 3 97.90%

17 @sendgrid/mail 3 97.87%

18 @nestjs/common 31 97.87%

19 ava 9 97.85%

20 @fortawesome/fontawesome-free 6 97.78%

Source: Renovate

Color Coding Explained
In the following charts, these colors denote the following:

Package appears in Individual Champion list

Package appears in Team Player list

Package is ranked in both lists.

• 8Open-Source Reliability Leaderboard

Best Team Players

Rank Package name
Number of

versions

Success

percentage

1 np 5 99.39%

2 ava 9 97.21%

3 tap 11 96.21%

4 prettier-eslint 5 96.12%

5 @commitlint/config-angular 8 94.73%

6 c8 3 94.62%

7 sinon 9 94.58%

8 @types/bluebird 2 94.40%

9 @rollup/plugin-babel 5 94.25%

10 mocha 8 94.00%

11 semantic-release 6 93.25%

12 daisyui 95 93.10%

13 @rollup/plugin-node-resolve 10 93.02%

14 eslint-plugin-ember 15 92.74%

15 rollup 65 92.67%

16 eslint-plugin-svelte3 4 92.67%

17 @rollup/plugin-commonjs 14 92.51%

18 @jest/globals 19 92.40%

19 svelte-preprocess 6 92.31%

20 eslint-plugin-n 15 92.14%

Source: Renovate

• 9Open-Source Reliability Leaderboard

All Stars

Titans

Package name
Individual

rank

Group

rank

prettier-eslint 1 4

np 2 1

@rollup/plugin-babel 6 9

mocha 7 10

tap 14 3

c8 16 6

ava 19 2

Package name
Number of
versions

Success
percentage

jest 34 96.85%

@commitlint/cli 15 96.82%

@types/jest 25 96.63%

lint-staged 27 96.56%

rollup 65 96.36%

ts-node 8 96.31%

ts-jest 21 96.15%

eslint 27 95.52%

pnpm 106 95.07%

@typescript-eslint/eslint-plugin 75 94.67%

Source: Renovate

Source: Renovate

• 10Open-Source Reliability Leaderboard

Maven (Java datasource)

For Maven, the filter is limited by the number of updates. We were happy to see strong representation from Google,
Apache, and SpringFramework packages. Indeed, Apache ended up with four packages on the All-Star list. It’s
reassuring to see that the big players are producing safe updates.

Individual Champions

Rank Package name
Number of
versions

Success
percentage

1 org.apache.maven.scm:maven-scm-provider-gitexe 4 99.15%

2 com.amazonaws:aws-java-sdk-kms 66 98.77%

3 com.amazonaws:aws-java-sdk-iam 94 98.68%

4 io.swagger:swagger-annotations 5 98.68%

5
net.javacrumbs.shedlock:shedlock-provider-jdbc-
template

16 98.53%

6 org.apache.maven.plugins:maven-release-plugin 3 98.41%

7 io.netty:netty-tcnative-boringssl-static 8 98.31%

8 io.sentry:sentry-spring-boot-starter 35 98.26%

9 com.github.ekryd.sortpom:sortpom-maven-plugin 4 98.21%

10 info.piccoli:piccoli 2 98.21%

11 de.codecentric:spring-boot-admin-starter-client 18 98.21%

12 org.apache.maven.plugins:maven-scm-plugin 3 98.11%

13 com.slack.api:slack-api-client 24 98.10%

14 org.springframework.boot:spring-boot-actuator 14 97.89%

15 net.bytebuddy:byte-buddy 13 97.84%

16 com.diffplug.spotless:spotless-maven-plugin 25 97.78%

17 com.google.cloud:libraries-bom 16 97.74%

18 org.apache.maven.plugins:maven-javadoc-plugin 3 97.51%

19 com.google.cloud.tools:jib-maven-plugin 5 97.10%

20 com.google.auth:google-auth-library-oauth2-http 13 97.10%

Source: Renovate

• 11Open-Source Reliability Leaderboard

Best Team Players

Rank Package name
Number of

versions

Success

percentage

1 org.apache.maven.scm:maven-scm-provider-gitexe 5 99.39%

2 com.github.ekryd.sortpom:sortpom-maven-plugin 9 97.21%

3 org.apache.maven.plugins:maven-release-plugin 11 96.21%

4 com.diffplug.spotless:spotless-maven-plugin 5 96.12%

5 org.flywaydb:flyway-maven-plugin 8 94.73%

6 org.apache.maven.plugins:maven-scm-plugin 3 94.62%

7 io.gravitee.common:gravitee-common 9 94.58%

8 org.apache.maven.plugins:maven-javadoc-plugin 2 94.40%

9 io.gravitee:gravitee-bom 5 94.25%

10 com.google.cloud:libraries-bom 8 94.00%

11
org.springframework.boot:spring-boot-starter-
undertow

6 93.25%

12 org.sonatype.plugins:nexus-staging-maven-plugin 95 93.10%

13 org.owasp:dependency-check-maven 10 93.02%

14 org.apache.maven.plugins:maven-install-plugin 15 92.74%

15 io.swagger.parser.v3:swagger-parser 65 92.67%

16 org.jetbrains.kotlin:kotlin-maven-serialization 4 92.67%

17 org.springframework:spring-aspects 14 92.51%

18 org.apache.maven.plugins:maven-shade-plugin 19 92.40%

19 org.springframework.boot:spring-boot-actuator 6 92.31%

20 redis.clients:jedis 15 92.14%

Source: Renovate

• 12Open-Source Reliability Leaderboard

All Stars

Titans

Package name
Individual

rank

Group

rank

org.apache.maven.scm:maven-scm-provider-gitexe 1 1

org.apache.maven.plugins:maven-release-plugin 6 3

com.github.ekryd.sortpom:sortpom-maven-plugin 9 2

org.apache.maven.plugins:maven-scm-plugin 12 6

org.springframework.boot:spring-boot-actuator 14 19

com.diffplug.spotless:spotless-maven-plugin 16 4

com.google.cloud:libraries-bom 17 10

org.apache.maven.plugins:maven-javadoc-plugin 18 8

Package name
Number of

versions

Success
percentage

io.sentry:sentry-spring-boot-starter 35 98.26%

com.diffplug.spotless:spotless-maven-plugin 25 97.78%

org.apache.maven.plugins:maven-shade-plugin 3 96.47%

io.quarkus.platform:quarkus-maven-plugin 37 95.65%

io.sentry:sentry-logback 34 95.20%

org.slf4j:slf4j-simple 15 94.96%

org.apache.maven.plugins:maven-compiler-plugin 4 94.69%

software.amazon.awssdk:sqs 234 94.52%

org.springdoc:springdoc-openapi-ui 11 93.18%

org.slf4j:slf4j-api 15 92.91%

Source: Renovate

Source: Renovate

• 13Open-Source Reliability Leaderboard

PyPi (Python datasource)

For PyPi, the filter is limited by the number of updates.

Individual Champions

Rank Package name
Number of
versions

Success
percentage

1 pulumi 49 100.00%

2 botocore-stubs 180 99.22%

3 types-python-dateutil 20 98.41%

4 types-pytz 13 97.87%

5 slack-sdk 23 97.54%

6 pulumi-aws 42 97.30%

7 pip 13 97.30%

8 types-setuptools 29 97.26%

9 typing-extensions 5 95.77%

10 sentry_sdk 33 95.56%

11 google-auth 21 95.16%

12 pytz 6 95.11%

13 jupyterlab 21 94.85%

14 pytest-mock 6 94.74%

15 setuptools 53 94.61%

16 types-redis 40 94.41%

17 types-requests 51 94.13%

18 aws-lambda-power tools 33 93.79%

19 platformers 8 93.75%

20 faker 42 93.41%

Source: Renovate

• 14Open-Source Reliability Leaderboard

Best Team Players

Rank Package name
Number of

versions

Success

percentage

1 pulumi 49 97.09%

2 pulumi-aws 42 96.91%

3 pip 13 96.15%

4 ruff 76 92.96%

5 sagemaker 69 91.60%

6 constructs 298 90.29%

7 flake8-bugbear 12 89.64%

8 pymongo 7 89.11%

9 setuptools 53 88.44%

10 flake8-simplify 16 88.32%

11 aws-cdk.core 45 87.96%

12 aws-lambda-power tools 33 87.80%

13 jupyterlab 21 86.13%

14 pytype 36 85.82%

15 sphinx 11 85.23%

16 pipenv 39 85.09%

17 paramiko 11 84.16%

18 ansible 25 83.55%

19 types-requests 51 82.77%

20 types-setuptools 29 82.52%

Source: Renovate

• 15Open-Source Reliability Leaderboard

All Stars

Package name
Individual
rank

Group
rank

pulumi 1 1

pulumi-aws 6 2

pip 7 3

types-setuptools 8 20

jupyterlab 13 13

setuptools 15 9

types-requests 17 19

aws-lambda-power tools 18 12

Source: Renovate

• 16Open-Source Reliability Leaderboard

Preventive Application Security with Mend.io

When it comes to preventive application security, one of the smartest things companies can do is to proactively

update open source dependencies to reduce the application attack surface and reduce possible problems from out-

of-date libraries if emergency updates are needed.

Granted, there will always be a need to balance new development efforts with security requirements. But if done
right, this preventive approach won’t negatively impact developers’ workload and may even free up development

resources. We recommend to following:

Automate dependency management.

Organizations should aim to put in place an automated dependency management routine that checks open source

dependencies consistently, flags issues, and assists in the remediation process. A good example is the Smart Merge
Control feature within Mend SCA. Mend’s Smart Merge Control is essentially like autopilot for component updates.

It can examine dependencies within a project and batch only the updates that have a high confidence level that they
will pass build tests and not break the build.

Smart Merge Control provides a high degree of automation, including identifying all the high confidence updates,
generating the associated pull requests, and then merging them, all automatically but with ultimate developer

oversight and control.

Assess confidence levels.
Any time an organization updates open-source components for newer, potentially more secure versions, they risk

functional problems with existing applications. That’s where confidence levels come in. Mend’s Merge Confidence
ratings levels, available as a standard feature in Mend SCA, assess the likelihood of whether updating a given

component will negatively impact application functionality or cause other issues. . Mend.io’s Merge Confidence
levels are based on peer crowd-sourced data from over 25 million dependency updates tracked by Mend Renovate.

Developers can merge updated components with high confidence levels with assurance that they are unlikely to
break the build. And when a component has a lower confidence level, it can flag to the developers that extra work
may be required to merge it, so they can plan appropriately.

Create batch updates.

Most open source development projects are getting increasingly complex, with more and more components. That

means checking and updating dependencies tends to take more time and effort. That’s why the Batch Update
capability in Mend SCA is especially important. Mend’s Smart Merge ControlBatch Update functionality provides a

way for developers to batch update (typically high confidence updates) into a single collection that can be applied
all at once. Even though it’s not complex work, manually generating 10, 20, or 50 pull requests for components that

need updating can be time consuming and boring. Mend’s Batch Update functionality eliminates the need to do that

manually and helps automate the update process.

• 17Open-Source Reliability Leaderboard

Contributors

Justin Clareburt

Justin Clareburt is the Product Owner for Renovate at Mend.io. He has been building software

solutions since last century, and most recently for Microsoft, Google, and Amazon. Justin is

passionate about developer productivity and is renowned for his love of keyboard shortcuts.

He is an avid supporter of open-source development, and is responsible for many free popular

productivity tools and keyboard shortcut packs.

Rhys Arkins

Rhys Arkins is Vice President of Product Management, responsible for developer solutions at Mend.

io. He was the founder of Renovate Bot – an automated tool for software dependency updating,

which was acquired by Mend.io in 2019. Rhys is particularly fond of automation and a firm believer in
never sending humans to do a machine’s job.

Carol Hildebrand

A veteran of Computerworld and CIO magazine, Hildebrand is an award-winning technology writer

who writes extensively about cybersecurity and how it impacts business innovation.

About Mend.io
Mend.io, formerly known as WhiteSource, has over a decade of experience helping global organizations build world-

class AppSec programs that reduce risk and accelerate development—using tools built into the technologies that

software and security teams already love. Our automated technology protects organizations from supply chain and

malicious package attacks, vulnerabilities in open source and custom code, and open-source license risks. With a

proven track record of successfully meeting complex and large-scale application security needs, Mend.io is the go-to

technology for the world’s most demanding development and security teams. The company has more than 1,000

customers, including 25 percent of the Fortune 100, and manages Renovate, the open source automated dependency
update projectFor more information, visit www.mend.io, the Mend blog, and Mend on LinkedIn and Twitter.

